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INTRODUCTION

While all systems of classical particles have single-particle momentum distri-
butions n(p) ol Maxwell-Boltzmann form, the momentum distribution plays a role
central to our understanding of systems of quantum particles. An outstanding ex-
ample is the low-temperature superfluid behavior of the Bose liquid, *He, where the
superfluidity is associated with Bose condensation of a macroscopic fraction of the *He
atoms into a zera-momentum state. The momentum distribution is complementary to
other characterizations of many-body systems and can be more informative. The pair
correlation function of liquid *He is very close to that of a hard-sphere classical fluid,
whereas the momentum distribution reveals the quantum behavior in the form of a
6-function spike in n(p) at p = 0 due to the Bose condensate. Momentum distribu-
tions are equally fundamental to the description of Fermi systems. The Fermi-liquid
properties of *He and electrons in metals are associated with a discontinuity in the
momentum distribuiion at the Fermi momentum, g, which defines a Fernu surface
for o three-dimensional system A detailed description of the, often complex, Fermi
surfaces in metals is essential to understanding their transport, optical, and magnetic
properties. At low temperatures, the transition to superfluid behavior of *He and the
transition to superconducting behavior of electrons is associated with the disappear-
ance of this Fermi surface. An outstanding problem in nuclear physics is how the
(uasi-exponential high-p tails observed in the n(p) of nucleons in nuclei ar= related to
the short-range real-space correiations of nucleons due to the strongly repulsive core
of the nucieon-nucleon potential. The momentum distributions of quarks are found
to be different inside nuclei and inside free nucleons, which suggests a possible role
for quarks in the deseription of nuclear forces. These varied illustrations attest to the
nnportance of the raomentum distribution as a revealing probe of the wave functions
of quantum tany-body systems,

Momentum distributions are of interest for most of the subjects of research
modern physics, including: systems of atoms, in solid and liquid phases; teract
g electron systems, such as conduction electrons in metals; systems of nneleons in
atomie nuelet and nudear matter; and systems of quarks i high energy phyacs \We
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across thus diverse range of energy and length scales, forces, and system types. The
general features of n(p) for systems of given statistics are in principle quite similar.
in practice, theorists in the various areas of physics face similar problems when they
attempt to predict the momentum distribution accurately, and experimentalists face
similar problems when they make measurements of quantities related to the momen-
tum distribution and attempt to extract n(p) from their data. In all fields there
has been a rapid advance in theory and experiment (in particular, the development
of large-scale facilities for scattering experiments), which is presenting exciting new
scientific opportunities.

There have been several excellent reviews of momentum-distribution research in
particular subject areas of physics such as electronic systems! and nuclear systems.
However, it is the commonality of interests, difficulties, and prospects across all of
physics, along with certain pivotal advances, which led to the organization of an
interdisciplinary Workshop on Momentum Distributions held at Argonne National
Laboratory on October 24-26, 1988. The purpose of this overview is to explain why
scientists with such diverse backgrounds have been brought together at this meeting,
to introduce and discuss the common elements of momentum-distribution studies,
and to establish a common language. We hope to facilitate an appreciation of the
more specialized articles which follow in these proceedings.

We begin by summarizing the general properties of momentum distributions.
Differences and similarities of atomic, electronic, and nuclear many-body systems
are examined, in terms of characteristic lengths and energies, relative importance of
exchange, and the nature of the two-particle interactions. We continue with a brief
commentary on the microscopic methods used to calculate n(p) from first principles.
Thereafter the discussion focuses on the ideas, techniques, and issues involved in the
experimental determination of the momentum distribution: deep-inelastic scattering,
the impulse approximation, Y-scaling, final-state effects, and scale breaking. Finally,
some typical examples of theoretical and experimentai momentum distributions will
be presented and compared, for a variety of systems.

FUNDAMENTALS

The momentum distribution n(p) of a quantum-mechanical system is the average
number of particles with momentum p, determined by the expectation value

n(p) =< | _al,ap,l¥ > . (2.1)

In this expression, |¥ > is the unit-normalized N-particle state of the system and a,',,,
and ap, are creation and annihilation operators for a particle with momenta p and
spin projection ¢. Usually, one deals with the mcmentum distribution of particles
having a given spin projection, defined by removing the spin sum in eq (2.1) . At

finite temperatures, Eq. (2.1) is replaced by an ensemble average over all N-particle
states,

In the quantum systems of interest to us, the de Broglie wavelength for single-
particle motion can be of the order of the interparticle spacing and in some cases mnch
larger. This implies large exchange effects. The type of quantum statistics obeyed by
the particles, Bose or Fermi, then has an important bearing on the character of the
momentum distribution. For Bose particles, the many-body wave function must be
symmetric and there is no restriction on the occupancy of any given one-hody mo-
mentum state, For Fermi particles, *he overall wave function must be antisymmetrie,

Consequently, the occupancy of any chosen one-body momentum state cannot be
greater than one,

The behavior of non-interacting Bose and Fermi gases as the temperature 1y
decreased from very high to very low values, or equivalently as the density i increased,
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approaches a Gaussian, the classical Maxwell-Boltzmann form, and the occupancy of
any particular momentum state is always much less than one. In tnis limit, the width
of the momentum distribution is proportional to the thermal energy of the particles
and the mean kinetic energy is 3kg7/2.

Upon lowering the temperature (or increasing the density), the occupancy of
some of the one-body momentum states begins to approach one and the effects of
statistics begin to emerge. The momentum distributions begin to deviate from the
Maxwell-Boltzmann form. For non-interacting particles where the single-particle mo-
tion can be described by states of definite momentum, the symmetry requirement
for Bose particles leads to the familiar Bose-Einstein momentum distribution, while

the antisymmetry requirement for Fermi particles leads to the familiar Fermi-Dirac
distribution.

T>>T, | T >>T,
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Fig. 1 Typical behnvior of the momentum distribution as a function of
temperature for the ideal Bose and Fermi gasses. The character-
istic temperature T, is defined in the text.
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as the particles take advantage of the lack of any restriction on multiple occupation.
The behavior in the Fermi case is quite different. The distribution remains flat and
tlose to one in the small-p region as the temperature is lowered, as if there were a
repulsion between particles trying to pile up at the same momentum. This behavior
is a direct consequence of the exclusion principle which forbids multiple occupation
of a particular momentumr state.

The effects of quantum statistics become dominant below a characteristic tem.-
perature, T.. For both Fermi and Bose systems, we may define such a characteristic
temperature by the condition that the thermal de Broglie wavelength of the particles
is equal Lo some appropriate measure of the mean interparticle spacing.

The characteristic temperature for a Bose gas may be taken as the Bose-Einstein
condensation temperature T, = Tpg = (27h%/1.897Tmkp)p?/?, where p is the density
of the gas, m is the particle mass and kg is Boltzmann's constant. At temperatures
higher than Tgg, the occupancy of any particular one-body momentum state remains
finite. Below this tomperature, a macroscopic (i.e. of order the total number of
particles in the system, N) occupation of the £ = 0 momentum state develops, which
is called “Bose-Einstein condensation.” This is reflected in the appearance of a term in
n(p) proportional to a Dirac delta function §(p), with a coefficient which determines
the (finite) fraction of particles residing in the Bose condensate. The condensate
fraction increases as the temperature is lowered further until finally, at T = 0, ali of
the particles are in the condensate. The condensate particles occupy a single quantum
state with a well defined mementum, namely p = 0. Bose condensation represents a
novel macroscopic manifestation of quantum principles.

The characteristic temperature for a Fermi gas is determined by the Fermi en-
ergy. By definition this is the energy of the highest single-particle level occupied at
T = 0, all of the lower levels each being filled with v particles, where v is the single-
particle level degeneracy arising from spin (and possibly isospin) degrees of freedom.

Thus T, = Tr = (A*/2mkg)(673p/v)?/3. As the temperature and hence the available
thermal energy declines, the particles attempt to reduce their energies by occupying
lower energy levels, but their readjustments are constrained by the exclusion prin-
ciple. When the temperature has dropped substantially below T, (say to T./5 or
T./10), the lowest-lying single-particle levels will be completely fiiled with their ret-
inue of fermions and n(p) will approach one. However, levels near the Fermi surface

defined by k = kp = (672p/v)'/? will be only partially occupied because of thermal

excitation. The mogl_entu ,'str}bution then exhibits the characteris&:l Fegni-Dirac
shape, as shown 1n Fig. 1. With further decrease in temperature, the fall-oft near the

Fermi wave number kr steepens uatil, at T = 0, all the particles have condensed into
the “Fermi sea.” The sharp discontinuity that appears in n(p) divides the momentum
states below kg, which are fully occupied, from those above, which are empty.

At T = 0 in non-interacting systems, the fraction of Bose particles which are
in the zero-momentum state reaches one, and there is a discontinuity of the Fermi
n(p) at kr equal to one. In interacting systems at T = 0, the features of macroscopic
condensation at p = 0 in Bose systerns and a finite discontinuity at kg in Fermi
systems are predicted to persist under rather general assumptions. However, due to
the interactions, the fraction of Bose particles which condense is less than one, and,
for Ferini particles, the discontinuity at kg takes some value less than one. These
“depletion” effects will be discussed more fully below.

The single-particle properties of many-body systems, both interacting and non-

interacting, may also be fruitfully discussed in terms of the one-body density matrix.
For a unit-normalized pure quantum state, this quantity is defined by

milrin) = N./dr"""er‘L"("lr2~-~"n)“’("'|"'z-..rzv) \ (21)

where spin and other internal degrees of freedom have been suppressed for simplicity.
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particle is moved from ry to r{, all the other particles remaining fixed. In general,
the one-bedy density matrix will depend on r; and r} individually. However, in a
homogeneous, isotropic fluid it can only depend on the magnitude of the separation

vector: , ,
p1(ri,ry) = pu(lr = ryl) (2.3)

The single-particle density matrix of the fluid contains all the features of interest for
this overview; hence we shall restrict our attention to that case.

The momentum distribution and the one-body density matrix are related by
Fourier transformation. For a Fermi system, we may write simply

n(p) =v! /pl(r)e""dr , (2.4)

where v is the level degeneracy. For a Bose system, the momentum distribution is
traditionally separated into two components, a delta function term representing the
zero-momentum condensate and a -mooth component corresponding to occupation
of the other single-particle states. Thus

n(p) = (2r)%pnoé(p) + n'(p) , (2.5)

where the condensate fra:.ion is determined by
ng = lim py(r)/p (7.6)
r—oo0

and the non-condensate portion has the Fourier representation

[~
-]
~—

2(0) = [la(r) = prloolledr 2.

Typical behaviors of both n(p) and p(r) for interacting Bose and Fermi systerus
at zero temperature are indicated in Fig. 2. To be definite, the particles are aszumed
to experience strong repulsive two-body interactions at small separations.

Consider first the one-body density matrix and momentum distribution of the
ground state of the interacting Bose system. The dynamical short-range correlaticns
due to the core repulsion, which govern the small-r behavior of p,(r) without regard
to statistics, determine n(p) at large p. The effects of statistical correlations are most
apparent in py(r) at large r and in n(p) at small p. The condensate, which gives rise
to a finite value of p,(r) at infinity, again manilests itself in n(p) as a delta-function
spike at p = 0 (not visible in the plot). The detailed behavior of both quantities
at intermediate r, or p, is also significantly affected by the statistics. An interesting
singuiar feature of the uncondensed component at small p results from the coupling
of long-wavelength density fluctuations to the condensate. This feature leads to a
finite intercept of pn(p) at p = 0, as shown?® in Fig. 2.

Now consider the ground-state momentum distribution of the interacting Fermi
system, as sketched in Fig. 2. The step function §(p - kg) which gives n(p) for the
noninteracting Fermi gas is modified in the presence of interactions, but the general
shape is preserved. The interactions promote some of the particles from single-particle
states inside the Fermi sea, i.e., with momenta less than A g, to states outside, thus
depleting the Fermni sea and creating a tail at higher momenta. If the system remains
“normal,” meaning that the interactions are nct such as to create a supertluid gronnd
state, n(p) retains its most characteristic Fermi feature, naunely a discontinuity at the
the Fermi wave number (cf. Fig. 2). The size of the discontinuity, denoted herein
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measure of the strength of the interparticle coupling.

.. Since the type of statistics has little effect on p;(r) at small r, the one-body
density matrix for the Fermi system is similar to that for the Bose system in that
region, as seen in Fig. 2. However, at large r the behavior of this quantity is markedly
different in the two systems: whereas the Bose py(r) approaches a constant value,
reflecting the existence of a condensate and therefore off-diagona: long-range order*-3
(ODLRO), the Fermi p;(r) damps out to zero, in accordance with the absence of
ODLRO at the one-particle level. The oscillatory behavior of the Fermi p(r) is
required to produce the discontinuity of n{p) at kp. The zeros of p,(r) are determined

by the location of the Fermi surface, and the overall amplitude of the oscillations is
determined by the magnitude of Z,.
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Fig. 2 TyApica.l behavior of the momentum distribution and one-body

density matrix in the ground state for interacting Bose and Fermi
systems.

SCALES

Before procceding to more concrete matters of calculation and measurement, it
will be useful to formulate meaningful bases for comparison of the diverse many-body
s{:;tems involved i1 our studies. In so doing we shaTl ain a better understanding of
their similarities and differences and begin to establish a common language for the
subsequent discussions.

Our overview will focus on three types of inany-body systems. It will be conve-
nient to refer to collections of atoms, like ligud or solid ‘He or YHe or solid molec-
ular hydrogen, simply as utomic systems. By nuclear systems we shall mean both



wsuee wuuics anua 1aeanzed, mnnnmite nuclear matter. The third category, electronic
systems, includes, narrowly, the system of electrons in a solid, and, more bhroadly, a
wide variety of systems of great topical interest in condensed-matter physics {e.g. in
Nigh-temperature superconductivity). Other many-body systems could also be con-
sidered, such as collections of quarks in particle physics, and collections of electrons
in atoms and molecules. Although lack of space prevents us from doing justice to
these additional examples, the concepts we shall discuss are generally applicable to
all momentum-distribution studies.

A length scale appropriate to microscopic description of a given many-body sys-
tem may be taken as a typical interparticle spacing, while the binding energy per
particle provides a reasonable energy scale. The three classes of many-body problems
we have just delineated involve very different scales in energy and length, ranging over
many orders of magnitude. To make a meaningful comparison of system properties
and behavior, we need somehow to remove these large variations.

We begin by considering condensed systems of atoms: solids and liquids. A
typical interparticle spacing for atomic systems is on the order of A, setting the
characteristic length scale. Typical binding energies for atomic systems are on the
order of meV, setting the characteristic energy scale. Numerical values are shown in
Table I for *He, a “representative” atemic system.

Focusing on Fermi examples, how important are exchange effects in determining
the shape of the momentum distribution? A measure of the strength of exchange,
or statistical correlations, is given by the Fermi energy Ef of the system. If Er is
large compared to the binding energy per particle, Ey, the Fermi statistics will have a
profound influence on n(p). whereas the condition Ef << E} implies that statistical
effects are unimportant and n(p) is well approximated by the classical result. For
liquid *He we find E}/EFr ~ 0.5, indicating that exchange plays a substantial but not
overwhelming role in this system.

As we shall see, experimental determination of n(p) involves inelastic scattering
processes at energy and momentum transfess much larger than the characteristic
energy and inverse length scales of the systems under study. In neutron scattunng
from atomic systems, momentum transfers 2 up to ~ 30 A~! and energy transfers
w up to a few eV are currently attainable. Since these values are much larger than
the Fermi energy Er and Fermi momentum kg for bulk atomic *He (see lable I),
a measurement of the momentum distribution of this system would apnear to be
experimentaily feasible.

We turn next to electronic systems. The unit of length conventionally adopted is

the Bohr radius a, = 0.5292 A, also called the atomic unit (au). The radius r, of the
volume per particle, measured in au, lies in the range 2-6 for the conduction-electron
subsystem in metals. Hence the characteristic length scale is comparable to that of
systems of atoms like liquid helium. However, typical cohesive energies of metals, per
atom, run to some tenths of Rydbergs (the conventional unit of energy, R = 13.61
eV), so the characteristic energy scale is three orders of magnitude larger than in
the atomic case. Values for the Fermi energy and momentum associated wich the
conduction electrons in sodium are quoted in Table I. Comparing the binding and
Fermi energies of this system we find Ey/Ef ~ 0.3. Thus, we expect statistics to
have an effect on n(p) comparable to that in liquid *He, though somewhat larger.

Experimentally, X-ray Compton scattering is used to study the dynamic struc-
ture of electronic systeins. Typical momentum and energy transfers employed in
current work are indicated in Table [. Just as in neutron scattering from a system of
'He atoms, these can be much larger than the relevant Fermi momentum and energy.

Thus we again infer that the momentum distribution is an experimentally accessible
aquantity.

Nuclear matter has characteristic length and energy scales which are vastly dif
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the atomic and electronic systems. The standard unit of energy is the MeV, which is
nine orders of magnitude larger than for the atomic case. In infinite nuclear matter
the binding energy per particle, Es, is 16 MeV. The characteristic Fermi energies
and momenta of nuclear systems, entered in Table I, also differ from those of the
atomic and electrcnic cases by many orders of magnitude. Nevertheless, when we
form the dimensionless measure Ey/Ef, we obtain a value 0.4, putting nuclear mat-
ter somewhere between atomic and electronic systems in the imnportance of quantum
statistics.

TABLE I

SCALES

DEEP INELASTIC NEUTRON SCATTERING

1 Angstrom(A) = 10~% ¢m
1 meV =116 K

3He Er=5.0K krp = 0.789 A™!
Ey/Er =0.5

54~' < Q <304~}
20 meV < E; < 5000 meV

X-RAY COMPTON SCATTERING

1 atomic unit (au) = 5.29 x 10~? ca

E =13.61 eV
Na EFr=3.23 eV kr = .486 p(au)
Ey/Er =0.3

2.5 p(au) £ Q < 100 p(au)
10 KeV< E, < 400 KeV

QUASIELASTIC ELECTRON NUCLEUS SCATTERING

1 Fermi (fm) = 10~!3 cm 1 GeV/c = 5.06 fm™~!
Er=38.4 MeV kp = 1.39 fm~?
Ey/Erp =0.42
Q@ <10 fm~! (2GeV/c) Jometimes quote Q3 = Q* — w?

500 MeV < E, £ 4 GeV



nems or tne nuctear wave tunction. ‘I'he momentum transfers relevant to studies in
the energy region of the quasielastic peak, prior to the onset of inelastic processes

sorresponding to the excitation of internal degrees of freedom of the nucleonic con-
stituents, reach only to 10 fm~!. This is just an order of magnitude larger than the
characteristic k# for nuclear systems. While the excess is not as large, in a relative
sense, as in the other two cases, important aspects of the momentum distribution wil!
be experimentally accessible here as well.

In summary: The similarities between atomic, electronic, and nuclear systems
are striking. Their characteristic energy and length scales may differ by many or-
ders of magnitude; yet they display a comparable balance of binding and exchange
effects. They are also similar in the sense that it is feasible to perform scattering
measurements for which the momentum and energy transfers are substantially larger
than characteristic values of particle momentum and energy in the ground state.
With some qualifications to be noted later, such experiments may be considered to
measure the pertinent momentum distributions.

CORE POTENTIALS
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Fig. 3 Typical interaction potential for atomic, electronic, and nuclear,
systems. The interaction strength has bcen scaled by the ap-
propriate Fermi energy and the distance has been scaled by the
inverse of the Fermi momentum.

To compare the three systems in another way, we may look at the basic interac-
tions between the atomic, electronic, or nucleonic particles. As expected, these inter-
actions generally differ by many orders of magnitude in their strengths and ranges.
To make a sensible comparison, we need to scale the potentials with suitable energy
and length measures for the different systems. For the energy measure, we may adopt
the Fermi energy, and for the length measure, the inverse of the Fermi momentum is
chosen. (Again, comparisons are to be made for a given type of statistics, hence the
Fermi case.) Fig. 3 juxtaposes representative potentials for atomic (helium), nuclear,
and electronic systems, scaled in this manney. Even when scaled, the potentials differ
by orders of magnitude. The helium potential is the strongest at short distances, its
core repulsion being very hard (but not infinite). The core of the nuclear potential is
twe orders of magnitude softer and the electronic (couombic) potential is two orders
of magnitude weaker still.
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ple monotonic 1/r repulsive behavior, is quite different: while its core is very weak
{n comparison with the helium and nuclear examples, this potential falls off very
slowly at larger r. As we look at larger distances the electronic potential becomes
stronger than the nuclear potential and ultimately surpasses the atomic potential.
These differences in the behavior of the basic two-body interactions have interesting
consequences for the respective many-body systems. Whereas the strong-coupling
limit is at high density in the helium and nuclear problems, it is at low density in the
electronic case.

Thus, while there are important similarities between the three classes of systems,
there are important differences as well.

CALCULATION METHODS

Many theoretical methods have been developed to study the momentum dis-
tribution of many-body systems. These may be divided into non-stochastic and
stochastic approaches. By the former we mean the more traditional, analytically
based procedures (like perturbation theory and hypernetted-chain methods) which
typically involve manipulations with field-theoretic operators or wave functions and
make heavy use of diagrams, before numerical work begins. By the latter, we mean
computationally-intensive procedures (like variational, Green's function, and path-
integral Monte Carlo methods) based on random-walk algorithms for evaluation of
expectation values or thermal averages, or for solution of the Schrédinger equation.
The various methods may be further classified according to their ability to handle sys-
tems with stronger interparticle couplings. At this point we shall make some general
remarks on the strengths and limitations of the most prominent approaches. ﬁ more
detailed review by Clark and Ristig,® including a rather complete set of references,
appears later in this volume.

Non-Stochastic Methods

The most familiar examples of non-stochastic methods are ordinary perturbation
theory in the bare interaction, starting from the noninteracting system, and varia-
tional methods based on independent-particle trial wave functions. Neither approach
is useful for predicting the momentum distributior for the systems under study here,
either becausc of the strength of the repulsive core (atomic and nuclear cases) or
because of the long range of the interaction (electronic case). On the one hand, rear-
rangements or resummations of perturbation theory are necessary, and on the other,
a viable variational treatment must incorporate dynamical correlations among the
particles.

Electronic problems (particularly those involving a uniform electron gas) can
often be successfully attacked with perturbation theory, provided the ring diagrams
are summed to produce a screening of the long-range Coulomb force. This approach
is usually framed in terms of Green’s functions. The random-phase approximation
(RPA), or some variant of it, is used to sum the ring or bubble diag -ams in the
perturbation expansion of the one-particle Green’s function.

Another non-stochastic approach to weakly-interacting electronic systems is
band-structure theory, which derives self-consistent one-electron wave functions using
a variety of methods including the local-density approximation. This is an eminently
practical and highly-developed method tor treating the electronic structure of real
solids where the lattice plays an essential role, and its successes within Compton-
scattering and positron-annihilation studies of momentum distributions have been
extensively reviewed elsewhere.!'” The limitations of band-structure theory become
apparent in dealing with strongly-correlated electronic systems,® and our overview of
calculational methods will focus on general approaches to strongly-correlated systems.

TN
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the expansion converge, and if so, how fast? For example, perturbative approaches
which re-sum only ring diagrams deteriorate or fail as the short-range core of the in-
teraction becomes stronger. They begin to deteriorate for strongly-coupled electronic
systems, as represented, say, by the l-%ubbard model. They fail completely for nuclear
and helium systems due to their strongly repulsive cores.

Perturbative techniques can, however, be extended to more strongly interacting
systems. Historically, this was first done by Bru.ckner,® his ideas being systematized
in terms of a Goldstone diagrammatic expansion.!?'!! When strong repulsive cores are
present, it becomes imperative (as a minimum) to re-sum the particle-particle ladder
diagrams. This leads to “hole-line expansions” for the quantities of interest, which
have seen extensive use in nuclear-matter theory at noi-too-high densities. However,
the ladder and self-energy resummations which define Brueckner theory do not suffice
for very strongly correlated systems like the helium liquids.

In a few cases, analysis to all orders within perturbation theory can be carried out
vo yield valuable ezact results, even for very strong couplings. These results typically
invelve Limiting conditions on one or mcre of the relevant variables, iacluding density,
distanc:, wave nmber, and temperature. One such result is the prediction of a 1/p
singularity in the ground-state n(p) of a Bose system?® like liquid *He. Another is
the prediction of a Fermi-surface discontinuity in the momentum distribution of all
normal Fermi fluids.!2:%3

Self-consistent summation of rings and ladders, leading ultimately to parquet
theory!* offers hope for a comprehensive and quantitative microscopic theory of
strongly-coupled systems within the perturbative framework. Unfortunately, this ap-
proach has proven exceedingly difﬁcuﬂ; to implement, especially for Fermi systems. In
the interim, variational methods have come to the fore as the most practical means for
evaluating the properties of the helium liquids and of nuclear matter at high density.

In the variational approach, a ground state-wave function is chosen on the basis
of an intuitive understanding of the correlation structure of the many-body system.
The energy expectation value is then minimized with respect to variational parame-
ters or functions appearing in the trial state. The most common trial wave function
is the Jastrow form, originally motivated by the requirement that short-range two-
body correlations be included in the wave function.(h is remarkable that this choice
also provides for a correct description of the long-range correlations corresponding
to virtual phonons. Although the Jastrow form %eads to useful results for the sys-
tems under study, the predictions for properties like the ground-state energy and
rmomentun. distribution are generally only semi-quantitative.

More sophisticated wave functions, incorporating further aspects of the correla-
tion structure (triplets, momentum-dependent backflow, spin-dependent correlations,
noncentral correlations ...) are now in wide use. Quantitative results are obtained for
the ground states of liquid ‘He and 3He, and presumably also for the ground states

of nuclear angd neutron matter. Correlated variational methnds have not reached the
same state of refinement or popu?a.nt.y in application to the electron gas and other

electronic systems. However, they have been rather successful in this context even at
the simple Jastrow level (uniform 3D electron gas), or at the (simpler still) Gutzwiller
level. Their most dramatic “electronic” success story is found in Laughlin’s theory of
the fractional quantum Hall effect.'s

As described, the variational ap(froach is limited tc the ground state. However,
variational ideas have been extended to excitations in the correlated random-phase

approximation,'®'!? derived from the Dirac-Frenkel time-dependent variational prin-
ciple. Moreover, the variational approach has been extended to the evaluation of

equilibrium properties of quantumn fluids at finite, but low, temperatures.!®

La variational approaches to atomic, nurlear, and electronic systems, the coun-
terpart of the convergence worry of perturbation theory is the problemn of reliable
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wave functions. This highly rontrivial problem is discussed by Clark aud Ristig®
and will not be considered here in any detail. Depending on the application and the
sophistication of the wave functions, higher-order cluster diagrams contributing to
correlated expressions may be either partially re-summed, approximated, or ignored.
Current practice!?'2% involves the use of “scaling procedures” to simulate the etfects
of higher-crder terms which are difficult or impossible to evaluate explicitly.

A deeper problem of more conceptual weight is the constraint which the choice
of wave function imposes on the physical description. Lacking the right intuition, the
preposed wave function will not have sufficient freedom, and interesting phencmena
(for example, phase transitions) may be missed. There exist stability tests which
make this drawback less serious, but these tests usually refer only to local stability.
Recent work with shadow wave functions?! introduces a welcomne flexibility which
reduces the reliance on intuition.

A related criticism of the variational approach is that improvements are not very
systematic. This criticism may be answered by an extension of vaniational theory
known as the method of correlated basis functions??:?® (CBF'). Iu CBF a basis of
functions is generated by applying a correlation operator determined variationally, to
a complete set of model wave functions suitable for a weakly interacting system (e.g.
Slater determinants). This scheme combines the insights and techniques of the vari-
ational approach to strong interactions, with the formal advantages of perturbation
theory and other approaches (e.g. RPA, BCS, etc.) designed for weak interactions.
Of course, the method will also suffer (in lesser degrees) from the same kind of con-
vergence worries which plague these underlying approaches. Although complicated
in appearance, CBF is one of the more efficient, quantitative, and powerful of the
non-stochastic approaches. yielding a variely of useful results for atomic, nuclear,
and electronic systems.

Stochastsic Methods

The available non-stochastic techniques all experience some degree of difficulty in
handling very strong interactions. Such a difficulty is not intrinsic to the stochastic
approacies. although some “hangover” may be experienced since the implementa-
tion of stochastic treatments usually relies on information provided by a prior non-
stochastic study. Another (related) advantage is that stochastic methods are immune
to the convergence problems which beset perturbative and variational prccedures. On
the negative side ofpthc ledger, stochastic methods suffer froin the well-known disad-
vantages of computer-intensive, “granular” simulations.

The variational Monte Carlo (VMC) method contains basically the same physics
as the variational approach described ur.aer non-stochastic methods. However, a
Metropolis Monte Carlo algorithm is used to evaluate the many-body integrals. This
technique is superior to those employed in non-stuchastic variational theory, such as
hypernetted-chain re-summation, since higher-order cluster diagrams are automati-
cally included. The statistical errors associated with the Metropolis algorithm can be
effectively controlled by variance reduction techniques. Perhaps the major concern
is that (for obvious practical reasons) the simulations are perforined for a sample
of a few dozen or a few hundred particles, instead of extended medium. Periodic
boundary conditions are imposed in a finite cube, with side length adjusted to give
the pre-assigned average particle density. Finite-box-size etfects can be signiticant,
especially for the long-range behavior of the one-body density matrix, though they
are generally believed to be of little importance.

Needless to say, VMC suffers from the same intrinsic limitations as its non-
stochiestic counterpart. Unless the general nature of the interesting physics is known
in advance, the variational approach may pass it by.

A more powerful alternative is the Green's function Monte Carlo (GEFMC)
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~ equation in real time, which may in turn be solved by Monte Carlo techniques. In
principle, this approach leads to the exact ground state. In practice, it works exceed-
ingly well in application to Bose systems, such as liquid *He, where the ground-state
wave function is positive. As usual, there are statistical errors (arising in the solution
of the Schroddinger equation as well as in the evaluation of various quantities), but
again these can be controlled by vanous techniques. There are also finite-box-size
effects, since again one must work with a finite number of atoms. In particular, the
size of the simulation box limits the accuracy of GFMC predictions of the large-r
behavior of the exact p,(r) and consequently the singular behavior of n(p) at small p
is missed. Otherwise, state-of-the art predictions for the momentum distribution and
the condensate fraction are obtained.?*

While the \reatment of Bose systeins in GFMC is relatively easy, Fermi applica-
tions remain problematic. The antisymmetry requirement, a global property, is hard
to build into the diffusion algorithm, which is by nature local. In straightforward
application, the fact that the wave function is not of one sign leads to an exponential
growth of the statistical error. Nevertheless, approximate realizations of GFMC-e.g.
the fixed-node approximation and transient estimation-may be used to obtain quan-
titatively reliable results?*'2? for liquid *He. Even so, much work remains to be done
to bring the fermion problem to an aesthetically satisfactory conclusion.

Apart from this specific Fermi difficulty, the GFMC treatment should eventually
converge to the exact ground-state wave function of the fermion or boson system.
However, in practice, with finite running time, this may not be the case. Impcrtance
sampling is used to speed the convergence of the calculation, but it may also preju-
dice the final results. An initial trial wave function, taken say from non-stochastic
variational theory, is commonly used as an importance function to select the most
likely configurations. If this wave function is not close to the true ground-state wave
function, but represents instead some sort of metastable state, the method may not
get the chance to find totally new or unexpected features of the many-body system.

Recently, in a beautiful implementation of Richard Feynman's view of quan-
turn theory, Ceperley?® has developed path-integral Monte Carlo (PIMC) methods
to evaluate the equilibrium properties of quantum fluids at finite temperatures. The
calculation begins with an accurate representation of the density matrix at high tem-
peratures. A lower-temperature density matrix is then constructed from a path inte-
gral over products of high-temperature density matrices. Metropolis-type aigorithms
allow accurate results to be obtained for the properties of liquid *He over a broad
range of temperatures and pressures.

IMPULSE APPROXIMATION

[n previous sections we have compared and contrasted the theoretical issucs which
are imnportant to momentum distribution studies in different systems. As we scan fromn
atoinic systems through electronic and nuclear systems all the way to particle physics,
we have covered ten orders of magnitude range in energies, momenta, and interac-
tion strengths. Nevertheless, we have found many common conceptual elements and
calculational approaches. In the present section, we show that experimental stud-
ies of momentum distributions also shere common thetnes across this extraordinary
dynamic range. Momentumn distributions are usually measured by scatteriug expen-
ments in which the energy and momentum transferred are very high compared to the
energies and momenta charactenistic of ground-state properties and collective hehav-
tor. [n this limit, the scattering law may be related to the momentum distribution
by invoking the impulse approzimation, which ass.umes that a single particle of the
syslatem 13 struck by the scattering probe, and that this particle recoils t}reely from the
cellision.

Such experiments begnn with the discovery of the Compton effeci?” in the seat.
teting of Xerays from electrons in metals.?® Today, neutron scattering at energies of
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scattering at CeV energies is used to measure n(p) in nuclei and inside nucleons.
fn all cases, the observation of appropriate scaling?®® (e.g. “Y-scaling” ) behavior
of the cross section is vresumed to indicate that conditions for the validity of the
unpulse approximaticn have been approached. Violations of this scaling are also
of interest. They can arise from excitation of internal degrees of freedom (“scale
breaking"), or they can be due to breakdowns of the impulse approximation such as
final-state interactions of the struck particle, etc. In all cases, the measured quantity
is a “Compton profile,” with amounts to a projection of the momentum distribution
onto one dimension. The various experimental settings entail common data analysis
and methodological questions. In this section we shall elaborate on these common
elements of the measurement of momentum distributions.

Deep-Inelasiic Neutron Scattering

The scattering of neutrons by an atomic system is described by the double dif-
ferential scattering cross section, which is the scattering per unit solid angle and per
unit energy. This is calculated in first Born approximation, the interaction of a neu-
tron with an atom being expressed as a Fermu pseudopotential proportional to the
scattering length. In neutron scattering the cross section is traditionally written as®®

d?o or k,
T z;k—,S(Q.w) \ (5.1)

where o is the total scattering cross section for a single atom and k; an . k, are
the initial and final neutron wave vectors. The interaction of the neutron with the
sample is described by the dynamic structure factor S(Q,w), with znergy transfer

w = (h*/2m,)(k? - k%) and momentum transfer Q = |k; — k]| .

The dynamic structure factor is the Fourier frequency trousform of the density-
density correlation function of the sample. It is convenient to separate the structure
function into two components

S(Quw) = Z2 5ep(Quuw) + ZIIRES, () (5.2)

In the first term, S.oa is the coherent structure factor®! and represents density fiuc-
tuations which involve different atoms. Thus

o
Scoh(va) = ;%,‘Rc/o dt C'u‘ Z < \pulg"""'(‘)C'Q";(o)l\yo > (5‘3)
1)

where r,(t) and £,(t) are the time dependent positions of the two atoms, and Wy
is the wave function for the initial state of the system before the scattering. This
tern describes the collective behavior of many atoms including collective excitations,
crystalline order, etc. The second terin S, - 18 the incoherent struct:ire factor, which
only involves the motion of single atoms. Again, this may be written as the Fourier
transform of a time correlation function

Sine(@yw) = ;lﬁne/o dt et Y < lend WL g, 5 (5

which now only involves the seattering from a single atom at different times, Conee.
cluvntly. this structure factor will be sensitive to single-particle motioas such ay self
ditfusion and, as we will see, the momentum distribution.
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to the interatomic spacing. For Q in excess of these momenta, the exponentials in
(5.3) will then oscillate rapidly from atom to atom and, on average, cancel out. There-
fore, Scoa will not contribute in the high-Q limit and only S,,.. will be left. This is the
limit of importance to momentum distribution experiments, so we may focus on the
scattering from individual atoms, commonly referred to as “Deep-Inelastic Neutron
Scattering.” 32

If, in addition, the energy transferred to an atom by a neutron is large compared
with the potential energies due to neighboring atoms, the finai state of the struck
atom will then be that >f a free particle. Under these conditions, the incoherent
scattering function reduces to the well-known “Impulse Approximation”¥? (IA), so
called because the scattering particle is supposed to impart a momentum to the struk
atom in a time so short that neighboring atoms are unable to respond. Then

sia@u) == [ i s(w-Zie ) L 6w

where M is the mass of the struck atom.

The scattering law (5.5) exhibits characteristic features which have often been
used as an indication that conditions for the validity of the IA have been reached.
The scattering is centered at and symmetric about the recoil energy w, = Q?/2M.
In neutron scattering the location of the scattering peak is determined by the mass of
the struck particle and different constituents in the sample can be separated by their
different recoil energies. In addition, the width of the observed scattering, at constant
Q, is proportional to Q times the width of the momentum distribution. In the IA
limit, the scattering is no longr. a function of the energy and momentum transfer
separately. For isotropic systems, where n(p) depends only on the magnitude of p,
the scattering becomes a function of a single variable

2

which is just the longitudinal momentum, p|;. The scattering law may then be rewrit-

ten
o0

. Q 1
Jia(Y) = v Sra(Qw) 5 Jy, dp pn(p) . (5.7)
The function J;4(Y') is known as the Compton profile. The asymptotic behavior
expressed by (5.7), called Y scaling, was first emphasized by West?* in the context
of electron scattering from nuclei. It is of course more broadly applicable to scat-
tering processes that meet the criteria for application of the impulse approximation.
On the other hand, we must point out that Y-scaling is a necessary gut not a suf-
ficient condition for validit o?the impulse approximation. For example, in systemns
with hard-core potentials, Y -scaling is predicted at high Q even though the impulse
approximation does not hold,33:38

As an illustration of this kind of scaling, consider the scattering from liquid
helium,37 plotted in Fig. 4 as J(Y), at Q's of 7, 12, and 23 A=' . When the
experimental data for S(Q,w) is plotted versus w (not shown), the peak centers
and widths vary greatly with Q. However, when converted to J(Y) these results
nicely demonstrate the predicted Y.scaling behavior. The scattering is symmetric and

centered at ¥'=0, and the width of the scattering is independent of the momentum
transfer Q of the measurement.

While Fig. 4 illustrates the expected Y.scaling behavior, deviations are in fact
evident, The measurements at the highest Q (23 A=') agree best with the impulse-
approximation predictions. At the lower Q's one sees significant deviations from IA
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importance in experimental determinations of the momentum distribution in real
experiments where Q, while large, is still finite. Such discrepancies have been termed
“Final-State Effects,” because they are thought to arise from the interactions of the
struck atom with neighboring atoms. Another factor may be the binding of the target
atom in the condensed phase, an ‘initial state effect’ which is ignored in deriving the
impulse approximation. Deviations from the A have received considerable theoretical
attention and will be discussed more fully later.
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Fig. 4 Inelastic neutron scattering from liquid ‘He at momenturn trans-
fers of 7 A=!, 12 A-! (at 1.0 K) and 24 A~ (at 0.35 K). The
results, plotted as J(Y'), all fall on approximately the same curve
illustrating the Y-scaling behavior (from ref 37).

Compton Scattering

An appropriate probe of electronic systems is the photon, whose coupling to
the electron charge is also well described in first-order erturbation theory. The
theoretical discussion proceeds in close analogy with that for neutron scat‘ering from
atoms. Accordingly, when the momentum transferred by the photon is large compared
to the interelectronic spacing, the properties of individual electrons are probed. This
condition, corresponding to what is termed Compton scattering, is met for photons
at hard X-ray energies (tens of KeV). Compton scattering is the basis of the earliest
of the momentum distribution experiments.*® It has yielded considerable information
on the electronic struciure of systems in condensed phases.!

The cross sectinn for the scattering of photons by a system of electrons in the
high-Q regime is

o do wp m, . ] Q’l d . ﬁ) )
diddw <J§)o ) /dp (i) b(w " 2m, * my ) ' (5:8)

where wy and w; are the frequencies of the incident and scattered photon, @ is the
momentum transferred by the photon, and m, is the mass of the electron. The
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double-differential cross section in the Compton-scattering case may %e expressed in
terms of a single scaling variable, Y. It is given by some trivial factors, times the
Compton profile

JY) = / / n(pe.py, ¥ )dpedp, - (5.9)
Pz Y Py

Here, we have written the Compton profile in a form which highlights its interpre-
tation as the longitudinal momentum distritution, obtained by integrating n(p) over
the components of p transverse to Q.

The cross section for Compton scattering consists of a spin-independent and a
spin-dependent component. The spin-independent component, which corresponds to
the dominant mechanism for the scattering of unpolarized X-rays, is associated with
the elementary Thompson cross section

= (m‘i,)z (5.10)

where e is the charge of the electron and c is the speed of light. In measuring this

compcnent of the scattering, one probes the full electronic n(p), irrespective of the
spin of the electron.

do
dQ

The spin-dependent component

do, e? \? wa 2 l1—cos(¢)\ 3z ,~ -
- (=) (2) (F2Y)s Geww-R) @)

where k; and k; are the incident and final wavevector of the photon, ¢ is the scat-

tering angle, and § is the spin of the electron. This couiponent is only of interest
for polarized radiation. Using polarized X-rays, the momentum distribution of one
particular spin state can be measured. With the recent developments in synchrotron
radiation sources, magnetic Compton scattering studies of the spin-dependent mo-
mentum distribution have become practical.

In Compton scattering, the struck pasticle is always an electron and the scatter-
ing peak is always centered at Q2/2m,. However, the structure of the scattering peak
may be used to separate the contributions from different ‘types of electrons,’ such as
conduction and core electrons. The width of a Compton profile is proportional to
QAp/m,, where Ap is the width of the momentum distribution. The core electrons,
which are tightly bound, will have a broad profile, while the conduction electrons,
which are in extended plane-wave states, will have a relatively narrow profile. Fig. 5
itlustrates this distinction using the Compton profile of beryllium. The narrow con-
tribution results from the conduction electrons, while the broad background is due to
the tightly bound core electrons. The sharp change in slope of the scattering, which

is due to the jump in n(p) at the Fermi surface of the conduction electrons, is also
clearly visible,
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Fig. 5 Schematic illustration of the Compton profile from beryllium.
The broad component, which has been extended through the
central region bv the dashed line, is due to the tightly bound
core electrons. 'l ue narrow component is due to the nearly free
conduction electrons. The sharp change in slope at the Fermi
surface is clearly visible (from ref 28).

Quasielastic Electron-Nucleus Scattering

The appropriate probe for studying the momentum distribution of nucleons in
nuclei is the electron, which couples electromagnetically to nucleons. The situation
here is much more complicated than in electronic and atomic systems. It is im-
portant to use relativistic kinematics in describing the scattering. Moreover, the
nucleon-nucleon interaction is incompletely characterized, and its complexity makes
theoretical calculations difficult. Most important, internal degrees of freedom of the
nucleons are easy to excite with the energy and momentum transfers required to
approach conditions for validity of the impulse approximation.

The impulse-approximation result for the scattering of electrons by the nucleus

_ v [*do(Q) dp T
S1a@) =2 /M g J Ty (P00 = VME @ 4P+ /T +:))12)
5.

where v is the single-particle level degeneracy (=4), n(p) is the momentum distribu-
tion of nucleons in the ground state of the target, and do(Q)/dMg is the cross section
for electron scattering from a single nucleon leading to an excitation of the nucleon
with rest mass Mg (e.g. excitation of the A(1238 MeV)).

Y-scaling is predicted by the iinpulse approximation only if subnucleonic degrees
of freedom are not excited, and the final mass of the recoiling constituent(s) (M)
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as “quasielastic electron-nucleus scattering” (QENS), places upper bounds on t.'e
applicable momentum and energy transfers. The associated scaling function is given

Ly
o @SiaQ) o v [ ,
FLaWy) = TS ou@) = g [ dpen(e) (513)

which is similar to the formulae arising in deep-inelastic neutron scattering and Comp-
ton scattering. With relativistic kinematics, the scaling variable ¥ now takes the
somewhat different form

M QY w2
Y=pm=7l-5g+ar)

Because in QENS the energy and momentum transfers are limited by the necessity to
avoid the excitation of nucleonic internal degrees of freedom, it is difficult to achieve
momentum transfers more than a few times larger than the characteristic momenta of
nucleons in a nucleus, and Y-scaling is observed only for negative Y. This Y -scaling
portion of the cross section corresponds to the high-p components in the tail of the
momentum distribution. Of course, it is just these high-p components which provide
the most information on short-range correlations in nuclei.

(5.14)

Another consequence of the limited ranges of energy and momentum transfers in
QENS is that the o%'-shell character of the target pa.rtiﬁ; in the many-body medium,
prior to collisicn with the probe, can be far more important than in neutron or
Compton scatiering. Thus, while scaling behavior may still be observed, one needs to
modify the scaling vanable to take account of the binding of the constituent particles.
In particular, Sick and coworkers®®'4® proposed using Ys = p;| as determined from
the kinematic relation '

(p+ QP +M)*-M = w-SE , (5.15)

where the constant shift SE is a suitable average separation energy for removal of a
nucleon from the nucleus, and irrelevant recoil effects have been omitted. Improved
scaling plots of data are obtained in terms of Ys. Other forms for the scaling variable
have been proposed as well, notably in attempts to incorporate effects of “final-state
inieractions” into the analysis.*!

As an example of quasielastic electron-nucleus scattering, analyzed in terms of
the variable Ys, consider the results for a carbon target‘shown in Fig. 6. For
Ys below -0.1, the experimental results nicely illustrate the Y-scaling predictions,
Around Ys = 0 and above, the breakdown of Y scaling is seen as internal degrees of
freedpm of the nucleorn are excited.

The behavior illustrated in Fig. 6 is all the more impressive when one notes that
the scattering intensity changes by almost four orders of magnitude over the kinematic
range in Ys for which scaling appears to hold. In contrast, the Y-scaling plot for ‘He
shown in Fig. 4 extends over less than two orders of magnitude in the scattering
intensity. This disparity is due to the much higher backgrounds which prevail in
current neutron-scattering :xperiments, as compared with QENS. In the nuclear work,
the results found in the regime of large — Y5 are suggestive of an exponential fall-off of
the momentum distribution which might be a general fea‘ure of strongly-interacting
many-body systems. It would be of great interest to test this conjecture in future
neutron-scattering experiments on quantum fluids.

Before turning to other issues, we would like to address *he unfortunate semantic
confusion which can arise in trying to compare the three types of experiments: deep-
inelastic neutro.: scattering, gompton scattering, and quasielastic electron-nuclens
scattering. In condensed-matter physics, “Quasi-Elastic Neutron Scattering” (also
QENS) refers to scattering measurements in which the energy transfer is small, as
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refers to any scattering process in which the initial and finai energies of the scattering
(probe) particle are significantly different. “Deep-Inelastic Neui-on Scattering” refers
so higher-energy-transfer experiments which are aptly described in terms of scattering
off single atoms in condensed-matter systems. In nuclear physics, inelastic scattering
refers instead to cases in which there is excitation of nucleonic substructure, including
any process which creates new particles. Thus, even though the energy of the scat-
tering electron may change substantially in quasielastic electron-nucleus scattering,
the process is termed “quasielastic” because the recoiling constituent particle has the
same rest mass as it did before the collision. Finally, “Deep-Inelastic Electron-Nucleus
Scattering” refers to experiments which are best described in terms of scattering off
the probe electrons off the quark constituents of nucleons.
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Fig. 6 Quasielastic Electron Nucleon Scattering (QENS) from !?C at
several different momentum transfera. For Y > .1 GeV/c the
results all fall on the same curve, iilustrating the Y-scaling be-
havior. Y-scaling breaks down for larger values of ¥ due to the
excitation of internal degrees of freedom of the nucleon (from ref
40).

Final State Effects

As described above, the measurements of the momentum distribution in atomic,
nuclear, and electronic systems by scattering experiments all depend implicitly on
the validity of the impulse approximation. Tge impulse approxi..ation assumes that
the particle probe (neutron, photon, electron) scatters off a single particle (atom,
electron, nucleon) in the many-body system in a time so short that the particles
neighboring the struck particle have no time to react to the perturbation caused by
the probe. The response of the struck particle is determined entirely by its initial
momentum distribution, and it recoils from the collision in a free-particie state of high
momentum and energy. Obviously, this description becomes more accurate the higher
the momentum and energy transferred in the scaitering process (i.e. the shorter the

probe/struck-particle interaction time), and the wesker the interactions bet.ween the
struck particle and its neighbors.

In real experiments where the momentum and energy transfers are finite and in-
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atom-atom interactions; in nuclear problems, from nucleon-nucleon interactions; and
in Compton scattering, from both electron-electron and electron-ion core interactions
and orthogonalization. The important questions then are the size and form of the
deviations from the impulse approximation and the extent to which they limit our
atility to infer the single-particle momentum distribution from scattering data.

At high momentum and energy transfers, the most important deviations from the
impulse approximation are due to collisions of the recoiling particle with its neighbors,
which are called final-state effects. Hohenberg and Platzman®® considered this prob-
lem for deep-inelastic neutron scattering from helium. Elementary arguments lead
to the prediction that the impulse-approximation result will experience a Lorentzian
broadening with width

AYrwHM = poe(Q) (5.16)

where 04,¢(Q) is the atom-atora scattering cross section. Heuristically, in terms of
the uncertainty principle, this broadening is due to the finite ‘lifetime’ of the struck
particle before it collides with its neighbors. The simple result (5.16) for the width
of final-state broadening holas in several of the modern theories for FSE. However,
there is much debate over the details of the lineshape. For one thing, the origi .al
Hohenberg-Platzman Lorentzian-broadening model cannot be rigorously correct since
it violates the w? sum rule on S(Q,w).

Equation (5.16) suffices to indicate the properties which are most important in
determining the FSE in real systems. FSE are larger for stronger interactions between
articles and lower momentum transfers. Two idealized examples bracket the Yths-
ical cases: In the noninteracting gas, FSE are entirely lacking, and Y'-scaling holds
trivially. At the other extreme of a gas of hard spheres, FSE are always present, even
at infinite Q. Nevertheless, as we have already remarked, Y -scaling is predicted for
the limiting case of hard-core interactions even though the impulse approximation
is not valid. The repulsive cores for the real systems of interest to us are plotted
in Fig. 3. (The attractive portion of the potential plays a negligible role in FSE.)
Real systems may be ranked in descending order as follows, according to the strength
of the core potential, appropriat=ly scaled in terms of the characteristic momenta:
atomic systems such as ﬁelium quantum fluids; nucleons in nuclei; electronic sys-
tems; and finally color neutral systems of quarks and gluons. In ascending order,
the ranking of the corresponding inclusive scattering experiments according to max-
imal momentum transfers, again scaled with characteristic momenta, is: quasielastic
electron-nucleus scattering; deep-inelastic neutron scattering; Compton scattering;
and deep-inelastic scattering of electrons from nucleons (which really refers to scatter-
ing off taeir constituent quarks and gluons). Thus, FSE are expected to be significant
for boch deep-inelastic neutron scattering (DINS) on quantum fluids and quasi-elastic
clectron-nucleus scattering (QENS), while they are more readily avoided in Compton
scattering on electronic systeins and are absent in particle physics.

An important consequence of (5.16) for deep-inelastic neutron scattering is that
the approach to the irnpulse approximation will be very slow with increasing Q,
because the ¢¢,(Q) decreases logarithmically with Q for He-He scattering. Therefore,
helium is very close to a hard-sphere system wiere approximate Y-scaling behavior is
obtained witﬁout the impuise approximation being valid. The final-state broadening
interferes with observation of the features in the momentum distribution which are
the most interesting, i.e. the Bose condensate peak in *He and the Fermi surface
discontinuity in 3He. While in QENS the 0,,((Q) falls more rapidly with increasing

Q, the obtainable Q’'s are comparatively much smalier when scaled by characteristic
momenta.

Any attempt to determine momentum distributions in DINS and QENS must
somehow take into account the final-state effects. At present, we depend on theo-
retical calculations to provide the appropriate corrections. Unfortunately, this adds
another layer of complication and uncertainty to the interpretation of the experimen-
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quantitative characterization of FSE presents a major challenge for many-body the-
orists. Apart from highly nontrivial dynamical considerations, this problem involves
aspects of the strongly-interacting ground state (e.g., the two-body reduced density
matrix) which are difficult to evaluate. However, if we assume that the many-body
calculations of momentum distributions are correct, theories for FSE can be tested
using scattering data.4?

The recent non-Lorentzian broadening theory by Silver*® for ‘He, based on earlier
work by Gersch and Rodriguez** yields the broadening function shown in Fig. 7,
which is to be convoluted with the impulse-approximation prediction, Eq. (5.7),
to obtain the predicted scattering. While the FWHM of the function in Fig. 7
is comparable to that from the Hohenberg-Platzman Lorentzian-broadening theory,
Eq. (5.16), Silver’s theory has negative wings at large |Y| so that it satisfies the w?
sum rule which requires that the second moment of the broadening function be zero.
The additional physics which this theory takes into account is the pair-correlation
function of the interacting ground state, which governs the collision rate as a function
of recoil distance. The overall effect of final-state broadening predicted by Silver is
much smaller than in the original Hohenberg-Platzman treatment, and it produces
excellent agreement with the recent experiments of Sosnick et al. as discussed further
in the next section.4®
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Fig. 7 Final State Effect broadening function R(Y') for *He. The width
of the central peak is approximately po(Q), where o(Q) is the
atom-atom scattering cross section, in agreement with simple
‘lifetime’ arguments. The negative wings are required to satisfy
the w? sum rule (from ref 43).

Scale Breusking

Deviations from Y-scaling may arise from final-state interactions, but a more
fundamental cause is the excitation of internal degrees of freedom of the constituent
{)articles of the sample. The latter effect is often referred to as “scale breaking.” We
1ave already seen that such scale breaking may occur in the nuclear context. It is
also present in measurements of momentum distributions in other kinds of systems.
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«  First, consider the « attering of neutrons by a collection of atoms. Fig. 8 shows
an overview of the scattering function in the @ — w plane for a simple atom with no
internal excitations. At low Q and w the scattering is due to collective excitations
— phonons, :otons, diffusive modes, Bragg scattering, etc. At higher momentum
transfers the collective excitations are damped out and the scattering is dominated
by single-particle excitations. Finally, at large enough Q’s, the scattering is described
by the IA, and information on n(p) can be obtained.

S(Q,E)

\ . A2
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Fig. 8 Schematic of the dynamic structure factor S(Q,w) as & function
of energy and momentum transfer. The scattering at low Q and w
is dominated by ~ollective excitations - phonons, rotons, diffusive
modes, Bragg sc. ttering, etc. At higher Q and w the collective
excitations are damped and the single particle properties deter-
mine the scattering. At very high Q and w the scattering is
described by the Ix. In this region the peak is centered at the
recoil energy (Q3/2m) and the width of the peak is proportional
to Q. The scattering from particles with two ditterent masses
is shown to illustrate the ability to separate the scattering from
different constituents of the sample is the IA regime (From ref
46).

Scale breaking can be illustrated by the scattering irom a molecule which has
both translational and internal degrees of freedom. Bulk molecular hydrogen furnishes
an excellent example. The translational and interial modes (the latter consisting of
vibrations and rotations of ihe molecule about its center of mass) are essentially
decoupled. The IA is easily generalized to give

fﬂ di; 2 Q-‘ ' f)‘ -
L —cun- =+ 2E) (5
where f, and w, are respectively the structure factor and energy of the ntd internal

excitation. Fig. 9 shows the scattering from hydrogen'” when two internal excita-
tions, rotational excitations in this case, are excited. The rotational excitations shift
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multiple internal excitations are excited. At low energy transfers, only the first rota-
sional excitation is excited and a unique scaling variable can be defined. However, at
higher energy transfers many different excitations contribute to the scattering, each
centered at a different energy. It is clear chat no unique scaling variable can be defined
in this case and that Y-scaling will break down.

S(Q,E)a.u.)

Fig. 9 The observed scattering from liquid and solid para-hydrogen.
The crosses are the experimental results. The dashed lines are
the predicted IA scattering from the hydrogen molecule when the
J=0 to J=1 (14.7 meV) and J=0 to J=3 (88.2 ".=V) rotational

transitions are excited (from ref 47).

The situation is similar in nuclear physics. Fig. 10 shows an overview of the
nuclear response function. The resemblance to Fig. 8 for the atomic case is striking.
Ai low Q and w, nuclear response is dominated by elastic scattering, by inelastic scat-
tering to low-lying states, and by collective excitations such as the giant resonances.
At higher momentum and energy transfers the scattering is described essentially by
the impulse approximation (region II). Y-scaling applies only in this region. At even
higher momentum and energy transfers, nucleonic excitation and particle creation
break the scaling behavior. Finally, at extremely high energies scaling behavior of a
different sort, associated with electron scattering from the quark constituents of the
nucleon, sets in. (For furthe: details on deep-inelastic scattering from nucleons and

“z-scaling,” see the article by West in these proceedings.”® )

As an example of scale breaking in nuclear physics, refer once again to the mea-
surements on '?C plotted in Fig. 6. At low momentum transfers, the quasielastic
scattering can be described by Y5 scaling up to Ys = ~0.1 GeV/c or so. However, as
the incident energy is increased, more energy is available to create internal excitations
and Y'-scaling breaks down at lower and lower values of Ys. This is exactly analogous
to what is seen in neutron scattering from molecular hydrogen.

We emphasize that scale-breaking phenomena have nothing to do with the break-
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breaking (as the term is conventionally understood) is due to the excitation of inter-
nal degrees of freedom of constituent particles. In principle, momentum distributions
could still be determined in the presence of scale breaking by inverting a more general
imgulse-appreximation formula, such as eq. (5.12) or eq. (5.17). However, this has
yet to be attempted in practice.

NUCLEAR RESPONSE FUNCTION

~GeY W

'

ELASTIC

Electron scattering
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Fig. 10 Schematic of the nuclear response function R(Q,w) as a func-
tion of energy and momentum transfer. The scattering at low
energies (region I) is dominated by the elastic peak and inelastic
scattering from low-lying states and the giant resonances (GR).
At slightly higher energy transfers (region II) quasifree scattering
(QFS) from nucleous initially bound in the nuclear medium is
observed. This is the region where the momentum distribution
of the nucleons is accessible using QENS, At larger energy trans-
fers (region III-IV) sufficient energy is available to create pions
and to excite the nucleon (A, N*®, resonances, etc.). Finally, at
very large energy and momentum transfers (region V), electrons
are scattered directly from the quark constituents of the nucleons
(from ref 48).

Limstations on Determining n(p)

The impulse approximation provides a simple re'ationship between the single-
particle momentum distribution, n(p), and the observed scattering expressed in terms
of a Compton profile, J(Y). The experimental goal is to extract the momentum dis-
tribution from scattering measurements. Unfortunately, the extraction is hampered
by the fact that prominent — and physically interesting — features in n(p) may not
be strongly reflected in J(Y'), due to the integral form of the impulse-approximation
relationship (cf. eqs. (5.7), (5.8), (5.i2), and (5.17)).

To illustrate this fact, consider the ground-state momentum distribution of liq-
uid *He. Fig. 11a shows the results of two different microscopic calculations, based
on GFMC? and variational'® (HNC/S) techniques. In both cases, n(p) has a delta
function at p = O representing the Bose condensate, with condensate fraction ng=9.2
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they differ markedly at small but finite p. The variational calculation reproduces the

p~! singular behavior at small p which is due to coupling of long-wavelength density
fluctuations to the condensate. On the other hand, the GFMC result for n(p) shows
mo sign of this singularity, because of the finite size of the simulation box. Thus,
while the two results for n(p) are palpably different, the corresponding J(Y') curves
generated by the impulse approximation (Fig. 11b) differ only very slightly. When
the respective impulse-approximation results for J(Y) are in turn broadened by the
final-state effects given by Siiver’s theory*? /™ig. 11c), the predictions corresponding
to the two microscopic calculations become indistinguishable. We conclude that the
scattering experiment is insensitive to the singular behavior of n(p) at small p which
accompanies a proper treatment of long-range correlations. This insensitivity is ob-
viously due to the fact that, in the isotropic case, J(Y') reduces to an integral over
pn(p).
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Fig. 11 Illustration of the relationship between n(p) and J(Y). a) shows
the results of GFMC?* (solid curve) and variational*® (dashed
curve) calculations of n(p) in the ground state of liquid *He. Both
calculations predict a condensate fraction of 10 % which gives a
é-function at p = 0 (not visible in the variational calculation). In
addition, the variational calculation predicts a singular behavior
at =mall p which is absent in the GFMC result. b) shows the
effect of transforming n(p) to J(Y) usin%(5.7). The §-function
is still present. However, the singular behavior, which is the
dominant feature in the variational n(p) at small p, is now much
less prominent. c) shows the results of including the final state

broadening shown in Fig. 7. The two curves are now nearly
indistinguishable.

The above comparison documents an important limitation on the ability to ex-
tract information on the momentum distribution from scattering measurements. The
physically measured quantity is the Compton profile J(Y), not the momentum distri-
butiou n(p). While, in principle, n(p) could be obtained by numerical differentiation
of J(Y') data, it is clear that excellent statistics — perhaps unattainable in prac-

tice = would be required to distinguish experimentally between the two microscopic
calculations for n(p).



To round out this overview we present a few examples of momentum distributions
in atomic, electronic, and nuclear systems. We give a sampling of both theoretical
aad experimental results, obtained both for classical systems, where statistics do not
play a significant role, and for quantum systems, where they do.

Classical Systems

In atomic systems we encounter numerous examples in which the momentum
distribution assumes the classical Maxwell-Boltzmann form. Except for the lighter
elements, such as helium and hydrogen, the quantum nature of the constituent atoms
plays a minor cr insignificant role in the momentum distribution. In general, the
interactions between the atoms are relatively strong, whereas zero-point motion is
small. Accordingly, there is little overlap of the atomic wave functions in the con-
densed phases, which means that exchange effects are unimportant. Then it is an
excellent approximation to treat the atomic ‘particles’ classically, with quantum ef-
fects included perturbatively as required.
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Fig. 12 The normalized momeatum distribution for liquid neon at T=29.6
K. The dots are the experimental results. The solid line is a Gaus-
sian, the classical form for n(p), wivh the same root-mean-square
momentum (from ref 50).

Fig. 12 depicts the momentum distribution of liquid neon at 29.6 K, as in-
ferred from inelastic neutron-scattering measurements.’® The scattering results nre
well described in terms of a simnple Gaussian form for n(p), in accord with the classical
rediction. For given particle mass, the width of the classical momentum distribution
1 determined by the temperature of the system. The average kinetic energy per aton,
which is proportional to the width of the momentum distribution, is then expected
to have the familiar ideal-gas value 3kpT/2. The kinetic energy extracted from the
inferred momentum distrbution for neon is 48.2 K, which is somewhat higher than
the expected value of 44.4 K.

The differences between the measured and expected kinetic energies for neon ean
be attnibuted to quantum «ifects. These are small, although observable because neon
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comes from the small zero-pcint motion of the atoms. When this effect is small,
corrections of increasing order may be made using the series

<K >= gk,,r (1+ (/777 - 5}6(9/2")‘ +o) (6.1)

where 62 = (h*/3mk?) < A® >. The quantity AP is the Laplacian of the potential
energy. In the solid phase, the form of the corrections for zero-point motion is very
similar, the role of 8 being played by the Debye temperature, §p. Returning to the
comparison of kinetic energies for liquid neon and incorporating the quaitum zero-
point correction, one obtains a theoretical prediction for the kinetic energy of 49.5 K,
considerably improving the agreement witﬁ the measured kinetic energy.

Bose Systems

Liquid *He provides the most celebrated example in which the Bose character of
the constituent particles has a crucial influence on the properties of the many-body
systemn, and especially on its momentum distribution. The interatomic potential in
helium has a weak attractive portion and a condensed liquid phase does not form, at
vapor pressure, until the temperature is decreased to 4.2 K. Indeed, the interactions
are so weak that the system remains in a liquid phase down to zero temperature,
when no external pressure is applied. Due to the weak attractive interactions and the
light mass of the helium atom, the quantum zero-point motion is very large in the
liquid. This implies a very large overlap of atomic wave functions naively proposed

to describe the system. Correspondingly, exchange effects are expected to be very
important.

The high temperature properties of liquid helium are similar to those of conven-
tional liquids. However, when the temperature is lowered to about 2.2 K there occurs
a phase transition from liquid helium [ to a new phase, liquid helium II. The transi-
tion is signaled by a sharp feature in the specific heat — the famous A-point anomaly.
Liquid helium II, often called the superfluid phase, appears to contain a superfluid
component which flows without viscosity and is responsible for an anomalously large
thermal conductivity. Normal dissipative effects are attributed to a normal-Huid
component. According to this “two-tluid model,” the fraction of superfluid increases
to unity at absolute zero. The success of the phenomenological two-fluid picture is
thought to be indicative of the appearance of a Bose condensate in the momentum
distribution,®! a manifestation of Bose statistics with striking macroscopic repercus-
sions. There has been a forty-year history of attempts to observe this Bose condensate
by neutron scattering experiments.’?

Fig. 13a shows the measured scattering, J(Y'), in the normal liquid phase (liq-
uid He I) at 3.5 K, where no condensate iy present. Theoretical predictions for the
scattering are drawn as solid and dashed lines. The momentum distribution, cal-
culated using the PIMC method,?® is nearly Gaussian at helium II temperatures
and has been converted to J(V) via the impulse-approximation (IA) formula. To
allow direct comparison with experitnental data, this prediction for J(Y') has been
artificially broadened using a model of the instrumental resolution, resulting in the

dashed curve. The agreement is excellent. The significance of the solid curve will be
explained below.

Fig. 13b shows the measured scattering in the superfluid phase (liquid He II) at
.35 K. The dashed line is agnain an instrumentally-broadened theoretical prediction
based on the [A formula, this time using as input the n(p) from a ground-state GFMC
ealculation?t which yields a condensate fraction of 9.2 % . Due to the instrumental
brondening, the IA prediction no longer exhibits a distinct condensate penk. How-
ever, it retains a sharper peaking around Y = 0 than in the normal liquid, which
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wou ke an intensity around ¥ = U and is in generally poor agreement with the
observed scattering.
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Fig. 13 The measured scattering in the normal liquid phase at 3.5 K
(a) and the superfluid phase at 0.35 K (b) of liquid *He. The
dashed curves are the theoretical predictions for n(p) transformed
to J(Y) and convoluted with instrumental resolution. PIMC?®
calculations at 3.33 K have been used for comparison with the
normal liquid and are in excellent agreement with the experimen-
tal results, GFMC? calculations have been used for comparison
with the superfluid and large discrepancies exist near Y = 0. The
solid curves are again the theoretical predictions, but including
the FSE broadening shown in Fig. 7. The agreement between
theory and experiment is now excellent in both the normal and
superfluid phases (from ref 53).

The results of this comparison in the superfluid phase could be interpreted as
an indication that the condensate fraction is far smaller then theoretically predicted.
However, such an inference is unjustified without a consideration of the finalstate
broadening of the condensate peak. We may take final-state effects into account
by convoluting the instrumentally-broadened [A result with a final-state broedening
function furnished by the recent theory of Silver*® (Fig. 7). In the normal-liquid
case (Fig. 13e), this produces the solid curve, which is indistinguishable from the
[)rcdictcd scattering without final-state effects. Thus, final-state interactions have
ittle effect in the presence of the broad momentum distribution of the normal liquid.

Turning to the superfluid case, the solid curve in Fig. 13b gives the theoretically
redicted scattering when final-state broadening as we’l!\ as instrumental resolution
18 incorporated. There is now striking ngreement with the experimental datal This
analysis provides a dramatic example of the importance of final-state broadening when
a sharp feature is present in the momentum distribution. Moreover, the excellent
n?rnmnent between theory and experiment furnishes strong support for the existence
of n condensate in the superfluid and for the validity of the microscopic enlculations
of the momentum distribution.



Examples in which the Fermi character of the constituent particles is strongly
teflected in n(p) are quite widespread and can be found in atomic, electronic, and
nuclear systems.

Fig. 14a displays the results of some representative microscopic calculations of
the momentum distribution of the interacting electron gas (one-component plasma),
at a density pertinent to sodium. The solid line is {rom a variational calculation based
on an optimal Jastrow wave function,®* which accounts, in an average way, for the
effects of both short-range and long-range correlations. The long- and short-dashed
lines correspound to older ‘perturbative’ calculations,®® which invoke the random-phase
approximation and thus concentrate (in a more detailed manner) on the long-range
correlations. The momentum distribution of the noninteracting Fermi gas is also
plotted for reference.
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Fig. 14 Theoretical calculations of n(p) for the interacting electron gas.
a) n(p) at a density comparable to Na. The solid line is a vani-
ational calculation and the dashed lines are perturbative calcu-
lations. n(p) tor the noninteracting Fermi gas is also shown for
reference (from ref 54). b) Density dependence of n(p). The
curves are variational calculations of n{p) and the open circles
and crosses are Monte Carlo results. Smaller values of r, cor-
respond to higher density for the interacting electron gas (from
ref 54). ¢) Theoretical results for the discontinuity Z of the ho-
inogenous electron gas as a function of density. The experimental
results for metallic Na are included for comparison (from ref 57).
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electronic density, smaller r, corresponding to higher density. The two densities
considered differ by a factor 2!/3, The curves were obtained by the same optimal
Justrow treatment which gave the solid line in Fig. 14a, the required expectation
values being evaluated in a hypernetted-chain approximation which neglects elemen-
tary diagrams.®® The dots show the results of comparable variational Monte Carlo
calculations,’® which attest to the validity of this approximation. We observe that
the discontinuity Z, of n(p) at the Fermi surface narrows as the density decreases,
which implies that the system is becoming more strongly coupled. This behavior is
due to the fact that the screening of the long-range coulombic interaction between
the electrons becomes less effective at lower density. The contrary behavior is seen
in the atomic (viz. liquid 3He) and nuclear cases, where the basic interactions are of
short range and Z decreases as the density increases.

Fig. 14c collects a variety of theoretical results for the discontinuity Z, or “quasi-
particle pole strength,” of the homogeneous electron gas, and indicates that this sys-
tem: can display a range of behaviors between weak and strong coupling, in the density
regime relevant to alkali metals. The result of an experimental determination of Z
for metallic Na is included for comparison.’’

Fig. 15 sketches the momentum distributions obtained in a recent theoretical
study of nuclear matter within the method of correlated basis functions.’® These
results document the importance of the tensor interaction in depleting the Fermi
sea. With tensor forces preseat, the Fermi surface discontinuity is Z ~ 0.7, very
close to that found in the optimal Jastrow calculation for the uniform electron gas
at the densiiy corresponding to .aetallic Na. In this sense, nuclear matter and the
electron gas may be considered as comparably strongly interacting. Omitting the
tensor component of the nucleon-nucleon potential, the nuclear-matter Z increases to
about 0.85. In finite nuclei, the Fermi-surface discontinuity is broadened.
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Fig. 15 Momentum distribution in nuclear matter using the method of

correlated bagis functiYns. The solid curve includes the ter‘so
component of the nucleon-nucleon potential, while the dashe

curve shows the effect of omitting this component (adapted from
ref 58).
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momentum distribution in liquid *He at T = 0. The fixed-node GFMC calculation?*
and the variational treatment labeled FHNC3® predict essentially the same results
- for n(p). There is a Fermi-surface discontinuity of roughly 0.3 (not resolved in the
GFMC evaluation). This small value supports the view that liquid *He is the most
strongly interacting of the Fermi systems we have considered. The FHNC variational
treatment is predicated on a conventional trial ground-state wave function includ-
ing Jastrow two-body correlations, triplets, and backflow; it makes use of “scaling”
and cluster-expansion procedures in addition to Fermi-hypernetted-chain (FHNC)
resummation.

By contrast, the variational Monte Carlo calculation of Bouchaud and Lhuillier,%®
assumes a radically different trial wave function for the *He ground state, incorpo-
rating odd-wave pairing correlations as well as a Jastrow factor. This departure from
tradition has a dramatic consequence for n(p): the Fermi surface disappears entirely.
The implications of the Bouchaud-Lhuillier work are yet to be fully exple od, but it
suggests that there is still room for improvement in our fundamental understanding
of liquid *He, which serves as a prototype for testing approaches to other strongly-
correlated Fermi systems.

Normal °He
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Fig. 16 Theoretical n(p) for liquid *He. The FHNC*® and GFMC?* cal-
culations yield very similar predictions for n(p) with a Fermi-
surface discontinuity of roughly 0.3. The Bouchard and Lhuillier®®
(BL) calculation, which uses a radically different trial wave func-

tion incorporating odd-wave pairing, predicts that the Fermi-
surface disappears entirely.

CONCLUSION

We hope that this overview has convinced readers that momentum distributions
are fundamental to our understanding of quantutn many-body systemns in most arens
of physics. Even though the energy and length scales vary by more than ten orders
of magnitude, we have identified common conceptual and methodological elements
in theoretical and experimental studies of atomic, electronic, and nuclear systems.
For lack of space, our overview has not developed upon the similar analogies which
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t1al welis such as metal hydrides,%2:5% and positron-annihilation studies of electronic

- systems.” Nor have we discussed mcmentum-distribution experiraents in which more
‘taan one outgoing particle is detected.

Recently, there have been impressive advances in the theoretical calculaiion of
momentumn distributions. Numerical calculations, using GFMC and PIV.C tech-
niques, have benefited greatly from the accessibility of supercomputers and are be-
ginning to provide extremely accurate descriptions of the momentum distribution. In
addition, there have been significant conceptuval improvements in the variational wave
functions used to describe mnany-body syste as. Moreover, the number of strongly-
interacting many-body systems for which momenturn distributions are of interest is
expanding rapidly, particularly with the discoveries of strongly-correlated electronic
systems such as the heavy-fermion materials, high-temperature superconductors, and
structures displaying quantum Hall effects.® Accompenying these discoveries is an

expanding variety of possibilities for variational wave functions of Fermi systems.

. We have also discussed recent theoretical advances in the calculation of correc-
tions to the impulse approximation due to final-state effects in atomic and nuclear

s¥stems. These effects can be quite important since they cannot be experimentally
eliminated in feasible experiments on atomic and nuclear systems. We have shown
that a quantitative theoretical characterization is essential to the detailed interpreta-
tion of the experimental results.

There have also been impressive advances on the experimental side. The devel-
o?ment of new sources with increased energy and flux is expanding both the range
of systems that can be studied and the amount of detailed information that can be
obtained. Spallation neutron sources, such as IPNS, ISIS, and LANSCE, provide
much larger fluxes at higher energies than were hitherto attainable. Synchrotron
sources offer many orders of magnitude greater flux than evailable in laboratory X-
ray facilities, and they have stimulated a revival of Compton-scatterir., experiments.
New synchrotron sources, such as the Advanced Photon Source with special insertion
devices including wigglers and undulators, will further enhance the capabilities for
this class of measurement by several more orders of magnitude, and in particular
they will facilitate the measurement of magnetic Compton profiles. New positron
fucilities and imaging capability should yield enormous improvements in studies of
the Fermi surface of electronic systems. New facilities for nuclear physics research,
such as CEBAF, will furnish much higher intens:.ies for electron-scattering studies
of nuclei and will facilitate the exploration of high-momentum components of the
nuclear wave function. One can only imagine what momentum-distribution studies
will become possible with the 20 TeV energies of the Superconducting Super Col-
lider, or what constituent particles will form the basis for the impulse approximation
(Higgs bosons?). Accompanying the development of these new, more intense and
higher energy sources is the development of new and improved instrumentation with

much better resolution. Most of these technical advances are discussed in more detail
elsewhere in tfm volume.

In conclusion, we are now poised for an explosive growth of kiowledge within the
next few years about momentum distributions in many-body systems in all areas of
physics. It is our conviction that this progress will benefit greatly from an interdisci-
plinary sharing of concepts and methodology, which has motivated the organization
of this workshog. Our investigations of momentum distribvtions have convinced us,
once again, of the essential unity of physica.
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